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1. Exponents

Let a be a positive real number, and let x be a real number. We ask, what is
the meaning of ax?

1.1. When x is a positive integer. Let n = x, and assume that n is a positive
integer. Then an is defined to mean the product of n numbers whose value is a:

an = a× · · · × a︸ ︷︷ ︸
n times

.

From this, we obtain two significant properties.

(E1) am+n = am · an
(E2) (am)n = amn

To see this, write

am+n = a× · · · × a︸ ︷︷ ︸
m+n times

= a× · · · × a︸ ︷︷ ︸
m times

× a× · · · × a︸ ︷︷ ︸
n times

= am × an.

and

(am)n = (a× · · · × a︸ ︷︷ ︸
m times

)n = (a× · · · × a︸ ︷︷ ︸
m times

)× · · · × (a× · · · × a︸ ︷︷ ︸
m times

)

︸ ︷︷ ︸
n times

= a× · · · × a︸ ︷︷ ︸
mn times

= amn.

We wish to extend the meaning of ax so that it is defined for any real number
x, in such a way that the properties (E1) and (E2) remain true.

1.2. When x = 0. Consider the case when x = 0. We multiply a times a0;
whatever a0 means, if property (E1) is to remain true, we have

aa0 = a1a0 = a1+0 = a1 = a.

Dividing both sides by a gives

a0 = 1.

1.3. When x is a negative integer. Consider the case when x is a negative
integer, so that x = −n for some positive integer n. For (E1) to remain true, we
must have

anax = an+x = a0 = 1.

In this case,

a−n =
1

an
.
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1.4. When x is rational. Consider the case when x = 1
n , where n is a positive

integer. For (E2) to remain true, we must have

(a1/n)n = an/n = a1 = a.

Thus, a1/n is the unique number whose nth power is a; that is,

a1/n = n
√
a.

Consider the case when x = m
n , where m and n are positive integers. Then (E2)

produces am/n = (am)1/n, so

am/n = n
√
am.

1.5. When x is irrational. We now consider the case when x is irrational. This
is the hardest step.

Integers are obtained from natural numbers by algebraic considerations (defining
subtraction), and rational numbers are obtained from integers by additional alge-
braic considerations (defining division); however, real numbers are obtained from
rationals by geometric considerations (filling in gaps in the number line).

There is an additional property of exponents which is important in this context:

(E3) if 1 < a and r < s, then ar < as

This is true when x is any rational number, and we wish it to remain true for any
real number.

We line up all of the rationals by the order relation <, and see that there are
gaps in the line; so, too, we can line up all of the numbers of the form aq where
q is rational, and see that there are gaps in the line; we hope to fill these gaps by
numbers of the form ax, where x is irrational.

Let x ∈ R, and let bxc denote the floor of x; this is the largest integer which
is less than or equal to x. We use this to denote rational estimates of a decimal
expansion. For example,

• bπc = 3

• b10πc = 31 b10πc
10 = 3.1

• b102πc = 314 b102πc
102 = 3.14

• b103πc = 3141 b103πc
103 = 3.141

• b104πc = 31415 b104πc
104 = 3.1415

• b105πc = 314159 b105πc
105 = 3.14159

and so forth. In general,
b10nxc

10n
is x to the nth decimal place.

Thus we define ax when x is irrational as the following limit:

ax = lim
n→∞

b10ncx
10n

.
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2. Exponential and Logarithmic Functions

2.1. Exponential Functions. Let a be a positive real number. We have defined
succeed in defining ax for any real number x. Many of the properties of exponenti-
ation which are relatively obvious for exponents which are positive integers extend
to this more general definition. Among these properties are the following.

(a) a0 = 1
(b) a1 = a
(c) ar+s = aras

(d) (ar)s = ars

(e) r < s⇒ ar < as, if a > 1
(f) r < s⇒ ar > as, if 0 < a < 1

If we let x vary through the real numbers, we can view ax as a function of x
with a fixed base a.

Let a be a positive real number, a 6= 1. Define a function

expa : R→ R given by expa(x) = ax.

This is called the base a exponential function. It satisfies these properties:

(a) expa(0) = 1
(b) expa(1) = a
(c) expa(x1 + x2) = expa(x1) · expa(x2)
(d) (expa(x1))x2 = expa(x1x2)
(e) x1 < x2 ⇒ expa(x1) < expa(x2), if a > 1
(f) x1 < x2 ⇒ expa(x1) > expa(x2), if 0 < a < 1

Let use assume that a > 1; analogous comments apply to the case 0 < a < 1.
By property (e) above, expa is increasing, and therefore, expa is injective. Thus

we can construct an inverse for expa; the domain of the inverse is the range of the
function, so we need to find the range of expa.

We wish to show that ax →∞ as x→∞. Let M be a large positive real number;
we wish to show that there exists an x so that ax ≥M .

Let b = a− 1 so that b > 0. Since a > b, for any positive integer n we have

an > bn = (1 + a)n = 1 + na+ · · · ≥ 1 + na.

Let n be so large that 1 + na > M ; then an > M , which show that

lim
x→∞

ax =∞.

Since a−x =
1

ax
, we have

lim
x→−∞

ax = lim
x→∞

a−x = lim
x→∞

1

ax
=

1

lim
x→∞

ax
= 0.

Thus,
range(expa) = (0,∞).

We now restrict the codomain of expa to its range, making it a injective and
surjective, and thus invertible.
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2.2. Logarithmic Functions. Let a be a positive real number, and set

expa : R→ (0,∞) be given by expa(x) = ax.

This function is bijective, and hence invertible.
Let loga be the inverse of expa; thus

loga : (0,∞)→ R given by loga(x) = y ⇔ ay = x.

This is called the base a logarithm. Since exponential functions convert addition to
multiplication, logarithmic function convert multiplication into addition; this was
the original motivation for their invention. Moreover, the reader should be aware
that the inverse of an increasing function is also increasing.

Logarithms satisfy these properties:

(a) loga(1) = 0
(b) loga(a) = 1
(c) loga(x1x2) = loga(x1) + loga(x)2
(d) loga(xr) = r loga(x)
(e) x1 < x2 ⇒ loga(x1) < loga(x2), if a > 1
(f) x1 < x2 ⇒ loga(x1) > loga(x2), if 0 < a < 1

The graphs of exp2 and log2 are produced below. As a gets larger, the graph of
expa gets steeper for x > 0.
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3. The Number e

3.1. Periodic Compound Interest. Our first examples of exponential functions
will be those which compute compound interest. From this, we derive the transcen-
dental number e.

Suppose we invest 1000 dollars at an interest rate of 10 percent compounded
annually. The amount we have invested remains the same until one year passes, at
which point 10 percent of the amount is added to the total. If we let At denote the
amount invested after t years, then

• A0 = 1000
• A1 = 1000 + (0.1)1000 = 1100
• A2 = 1100 + (0.1)1100 = 1210
• A3 = 1210 + (0.1)1210 = 1331

We see that the rate at which this grows increases year by year; but the pattern is
obscure. It is actually easier to see the pattern if we think more generally.

Let r be the annual interest rate, A0 the initial investment, and At the amount
after t years. Then

• A1 = A0 + rA0 = A0(1 + r)
• A2 = A1 + rA1 = A1(1 + r) = A0(1 + r)2

• A3 = A2 + rA2 = A2(1 + r) = A0(1 + r)3

• At = A0(1 + r)t

Suppose that, instead of compounding annually, we compound quarterly; that
is, every three months, or four times per year. Then, the periodic interest rate is
the annual rate divided by four.

• A1/4 = A0 + ( r4 )A0 = A0(1 + r
4 )

• A1/2 = A1/4 + ( r4 )A1/4 = A1/4(1 + r
4 ) = A0(1 + r

4 )2

• A1 = A0(1 + r
4 )4

• At = A0(1 + r
4 )4t

Generalize this further; let k denote the number of periods per year, so that
we compound k times per year. Then, there are k times every year when we the
amount in the account by (1 + r

k ); these gives

At = A0

(
1 +

r

k

)kt
,

where r is the annual rate, k is the number of periods per year, and At is the
amount after t years.

The more periods per year, the faster the amount grows, as this table demon-
strates. We let the annual rate r be ten percent and the initial investment A0 be
one thousand. We compute the amount after five years for various values of k, to
the nearest dollar:

k A0 A1 A2 A3 A4 A5

1 1000 1100 1210 1331 1464 1611
2 1000 1103 1216 1340 1477 1629
4 1000 1104 1218 1345 1485 1639

12 1000 1105 1220 1348 1489 1645
365 1000 1105 1221 1350 1492 1649

8760 1000 1105 1221 1350 1492 1649
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This table demonstrates two facts:

• as k increases, the investment grows faster;
• as k increases, the rate at which the investment grows faster slows down.

3.2. Continuous Compound Interest. We wish to define continuously com-
pounded interest as the limit of periodically compounded interest as the k goes to
infinity. Thus we fix A0, r, and t, and attempt to understand the expression

lim
k→∞

A0

(
1 +

r

k

)kt
.

To do this, we define a new variable n by n = k
r , so that k = nr and r

k = 1
n . Since

r is fixed, n goes to infinity as k goes to infinity. We compute

lim
k→∞

A0

(
1 +

r

k

)kt
= lim
n→∞

A0

(
1 +

1

n

)nrt
= lim
n→∞

A0

[(
1 +

1

n

)n]rt
= A0

[
lim
n→∞

(
1 +

1

n

)n]rt
.

This computation tells us that continuously compounded interest may be computed
using an exponential function whose base is the limit of the sequence (1 + 1

n )n; it
can be show that this is an increasing sequence which is bounded above by 3, so it
converges. The number it converges to turns out to be so important in mathematics
that we give it a special name.

Define

e = lim
n→∞

(
1 +

1

n

)n
.

Then, the equation which computes the amount At for continuously compounded
interest is

At = A0e
rt.

We estimate e by computing a few values:

n (1 + 1
n )n estimate

1 (2)1 2.000000

2 (1.5)2 2.250000

4 (1.25)4 2.441406

10 (1.1)10 2.593742

100 (1.01)100 2.704813

1000 (1.001)1000 2.716923

10000 (1.0001)10000 2.718145

100000 (1.00001)100000 2.718268

∞ e 2.718281
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4. The Natural Exponential Function

We have previously discussed the meaning of ax when x is irrational. So, we
have a meaning for ex. It is convenient to rearrange this.

We are given that

e = lim
m→∞

(
1 +

1

m

)m
.

Let x be any real number. Set n = mx so that
1

m
=
x

n
. Since x is fixed, n→∞

as m→∞. Then

ex =

(
lim
m→∞

(
1 +

1

m

)m)x
= lim
m→∞

(
1 +

1

m

)mx
= lim
n→∞

(
1 +

x

n

)n
The natural exponential function is

exp : R→ (0,∞) given by exp(x) = lim
n→∞

(
1 +

x

n

)n
.

That is, exp(x) = ex. That is, exp = expe.
We wish to compute the derivative of this function. First, we compute

d

dx
ex =

d

dx
lim
n→∞

(
1 +

x

n

)n
= lim
n→∞

d

dx

(
1 +

x

n

)n
leap of faith

= lim
n→∞

n · 1

n
·
(

1 +
x

n

)n−1
= lim
n→∞

(
1 +

x

n

)n−1

=

limn→∞

(
1 +

x

n

)n
limn→∞

(
1 +

x

n

)
=
ex

1
= ex.

Thus ex is a function which is its own derivative. This proof has used the fact that,
in this case, the differentiation operator commutes with the limit operator. We will
give an alternative derivation shortly.
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5. The Natural Logarithm

The natural logarithm is the function

log : (0,∞)→ R given by log(x) = y ⇔ ey = x.

That is, log is the inverse function of exp, and log = loge.
It should be noted that it is not uncommon to let log denote log10, the base

ten logarithm. This is called the common logarithm. Because of this, the notation
ln(x) is used to mean loge(x). We avoid this notation, as (for Calculus and for
Statistics), the natural logarithm is far more useful and “natural”, and also more
“common”.

We rewrite the properties of the natural logarithm in this notation:

(a) ln(1) = 0
(b) ln(a) = 1
(c) ln(x1x2) = ln(x1) + ln(x2)
(d) ln(xr) = r ln(x)
(e) x1 < x2 ⇒ ln(x1) < ln(x2), if a > 1
(f) x1 < x2 ⇒ ln(x1) > ln(x2), if 0 < a < 1

It is now convenient to derive the change of base formula for logarithms. We
know that loga(x) = y if and only if ay = x. So, ln(ay) = ln(x), so y ln(a) = ln(x).
Therefore,

loga(x) =
ln(x)

ln(a)
.

One may use this formula with a scientific calculator to compute logarithms in any
base.

We now compute the derivative of the natural logarithm, using the fact that
d

dx
ex = ex. We let y = ln(x), and use implicit differentiation to find

dy

dx
. We have

y = ln(x) ⇔ ey = x

⇔ d

dx
ey =

d

dx
x

⇔ ey
dy

dx
= 1

⇔ dy

dx
=

1

ey

⇔ dy

dx
=

1

x

That is, the derivative of ln(x) is
1

x
.
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6. Alternative Derivation of the Derivatives

As promised, we give an alternative derivation of the derivative of exp and log;
in this case, start with log.

This derivation has these ingredients:

• f ′(x) = limh→0
f(x+ h)− f(x)

h
• ex = limn→∞(1 +

x

n
)n

• ln(x) = y ⇔ ey = x

• ln(x1)− ln(x2) = ln

(
x1
x2

)
Let f(x) = ln(x). Then, by definition of derivative,

df

dx
= lim
h→0

f(x+ h)− f(x)

h
by definition of derivative

= lim
h→0

ln(x+ h)− ln(x)

h
since f(x) = ln(x)

= lim
h→0

1

h
ln

(
x+ h

x

)
by a property of logarithm

= lim
h→0

1

h
ln

(
1 +

h

x

)
= lim
h→0

ln

(
1 +

h

x

) 1
h

by a property of logarithm

= lim
h→0

ln

(
1 +

1/x

1/h

) 1
h

= ln lim
n→∞

(
1 +

1/x

n

)n
since limit commutes with logarithm

= ln(e1/x) by definition of eu

=
1

x
Now, to obtain the derivative of ex, we have

y = ex ⇔ ln(y) = x

⇔ d

dx
ln(y) =

d

dx
x

⇔ 1

y

dy

dx
= 1

⇔ dy

dx
= y

⇔ dy

dx
= ex

That is, the derivative of ex is ex.
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7. Derivatives of Exp and Log in Other Bases

Let a be a positive real number. Using properties of exponentials and logarithms,
we see that

expa(x) = ax = exp(log(ax)) = exp(x log(a)).

We use this to compute the derivative of ax.

d

dx
ax =

d

dx
exp(x log(a))

= exp(log(a)) · log(a) by the Chain Rule

= ln(a)ax

Thus, the derivative of ax is ln(a)ax.
Finally, we produce the derivative of logs to other bases.

y = loga(x) ⇔ ay = x

⇔ d

dx
ay =

d

dx
x

⇔ ln(a)ay
dy

dx
= 1

⇔ dy

dx
=

1

ln(a)ay

⇔ dy

dx
=

1

ln(a)x

Thus, the derivative of loga(x) is
1

ln(a)x
.
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